A comparison of ARMS-Plus and droplet digital PCR for detecting EGFR activating mutations in plasma
نویسندگان
چکیده
In this study, we introduce a novel amplification refractory mutation system (ARMS)-based assay, namely ARMS-Plus, for the detection of epidermal growth factor receptor (EGFR) mutations in plasma samples. We evaluated the performance of ARMS-Plus in comparison with droplet digital PCR (ddPCR) and assessed the significance of plasma EGFR mutations in predicting efficacy of EGFR-tyrosine kinase inhibitor (TKI) regimen. A total of 122 advanced non-small cell lung cancer (NSCLC) patients were enrolled in this study. The tumor tissue samples from these patients were evaluated by conventional ARMS PCR method to confirm their EGFR mutation status. For the 116 plasma samples analyzed by ARMS-Plus, the sensitivity, specificity, and concordance rate were 77.27% (34/44), 97.22% (70/72), and 89.66% (104/116; κ=0.77, P<0.0001), respectively. Among the 71 plasma samples analyzed by both ARMS-Plus and ddPCR, ARMS-Plus showed a higher sensitivity than ddPCR (83.33% versus 70.83%). The presence of EGFR activating mutations in plasma was not associated with the response to EGFR-TKI, although further validation with a larger cohort is required to confirm the correlation. Collectively, the performance of ARMS-Plus and ddPCR are comparable. ARMS-Plus could be a potential alternative to tissue genotyping for the detection of plasma EGFR mutations in NSCLC patients.
منابع مشابه
A Comparison of ddPCR and ARMS for detecting EGFR T790M status in ctDNA from advanced NSCLC patients with acquired EGFR‐TKI resistance
A sensitive and convenient method for detecting epidermal growth factor receptor (EGFR) T790M mutations from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients with acquired EGFR-TKI resistance would be desirable to direct patient sequential treatment strategy. A comparison of two platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma sa...
متن کاملEvaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study
Emerging evidence has indicated that circulating tumor DNA (ctDNA) from plasma could be used to analyze EGFR mutation status for NSCLC patients; however, due to the low level of ctDNA in plasma, highly sensitive approaches are required to detect low frequency mutations. In addition, the cutoff for the mutation abundance that can be detected in tumor tissue but cannot be detected in matched ctDN...
متن کاملCross-Platform Comparison of Four Leading Technologies for Detecting EGFR Mutations in Circulating Tumor DNA from Non-Small Cell Lung Carcinoma Patient Plasma
Analysis of circulating tumor DNA (ctDNA) is emerging as a powerful tool for guiding targeted therapy and monitoring tumor evolution in patients with non-small cell lung cancer (NSCLC), especially when representative tissue biopsies are not available. Here, we have compared the ability of four leading technology platforms to detect epidermal growth factor receptor (EGFR) mutations (L858R, exon ...
متن کاملComparison of the SuperARMS and Droplet Digital PCR for Detecting EGFR Mutation in ctDNA From NSCLC Patients
BACKGROUND Liquid biopsy is emerging as an important approach for tumor genotyping in non-small cell lung cancer, ddPCR and SuperARMS are both methods with high sensitivity and specificity for detecting EGFR mutation in plasma. We aimed to compare ddPCR and SuperARMS to detect plasma EGFR status in a cohort of advanced NSCLC patients. METHOD A total of 79 tumor tissues and paired plasma sampl...
متن کاملA novel ARMS-based assay for the quantification of EGFR mutations in patients with lung adenocarcinoma
Quantification of epidermal growth factor receptor (EGFR) mutations is important for the prediction of tyrosine kinase inhibitor (TKI) efficacy in patients with non-small cell lung cancer (NSCLC). However, clinicians lack a sensitive and convenient method to quantify EGFR mutant abundance. The present study introduces a novel method, namely amplification refractory mutation system (ARMS)-Plus, ...
متن کامل